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Abstract

The present study is concerned with the properties of 2D shallow cavities having an irregular boundary. The eigenmodes

are calculated numerically on various examples, and it is shown first that, whatever the shape and characteristic sizes of the

boundary, irregularity always induces an increase of localized eigenmodes and a global decrease of the existence surface of

the eigenmodes. Besides, irregular cavities are shown to exhibit specific damping properties. As expected, the increased

damping, compared to a regular cavity, is related first to the larger perimeter to surface ratio. But more interestingly, there

is a specific enhancement of the dissipation for those modes that are localized near the boundary, modes which are favored

by the geometric irregularity.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

It is classical in room acoustics to cover walls with an absorbing material to damp acoustic waves. One may
even use ‘‘rough’’ absorbers, such as curtains, foam wedges or profiled diffusers [1,2], to increase the
absorption efficiency. A first guess would suggest that the damping is proportional to the ‘‘amount’’ of
absorbing material put in the room but this is not true: if the geometry is irregular, the increase in damping is
‘‘more than proportional’’. Recently, these ideas have been used to design a new type of efficient road noise
barrier (the Fractal WallTM, product of Colas Inc., French patent No. 0203404). In this application the effects
of the irregular geometry and bulk absorption in the material are combined. It should be noted that the role of
specific geometry designs to increase bulk absorption has received recent interest [3–5].

Here we consider the surface absorption on an irregular wall. More precisely, we show that there exists a
specific physical mechanism, namely localization, which creates an enhancement of damping, so that the
absorption increases more rapidly than the surface of absorbing material. For localized modes, the so-called
existence volume may be only a small fraction of the total resonator volume and this fraction decreases when
the irregularity is more pronounced. These localized modes are found to be confined near the boundary where
the dissipation occurs. So, for these modes, localization directly contributes to the enhanced damping power
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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of such irregular cavities. These effects were first found in studies of prefractal acoustic cavities [6–8]. But if
one searches for more realistic damping structures in, e.g. architectural or urban acoustics, the use of fractal or
prefractal structures may be practically difficult.

This raises the question of whether the increased damping is related specifically to fractality, or more simply,
and more generally to geometric irregularity itself. Recently, the damping in non-fractal rough drums with
Dirichlet boundary condition has been studied [9]. It was found that, in specific cases, rough Dirichlet
boundaries may increase the damping. In the following we show that the three properties displayed by
prefractal acoustic cavities—enhanced density of states, existence of localized modes (see also Ref. [10]), and
increased damping—are general properties of any irregular structure and increase with geometry irregularity.
Notably, the appearance of localization linked to irregularity and the corresponding damping enhancement
are found to be the properties of any irregular cavity whatever its shape and characteristic sizes.

2. Localization in irregular cavities

In this section we show that, in a 2D shallow cavity with irregular rigid boundary G, there always exist a
significant number of modes which are confined close to the irregular region of the cavity. As model cavities
we consider a square cavity of side a where the whole or part of the upper side is replaced by irregularly shaped
walls, as shown in Fig. 1. In order to allow comparisons between different geometries, the surface area is kept
constant, equal to S ¼ a2, independently of the cavity shape.

Assuming an adiabatic linear lossless medium and weak losses at the wall—the surface admittance eðoÞ of
the wall is supposed to be very small—the amplitude distribution of the eigenmodes is well approximated by
the zero-loss eigenmodes, solutions of the eigenvalue problem

r2cn ¼ �k2
ncn, (1)

with the boundary condition at the walls

n � =cn ¼ 0; n the normal vector to the boundary. (2)

The eigenvalue kn of the above problem is taken as approximated eigenfrequency. The case of arbitrary losses
is discussed later.

The localization or confinement of the eigenmode cn is characterized by its ‘‘existence surface’’ [11,6]:

Sn ¼
1R

D jcnj
4 dS

, (3)

where cn is normalized by Z
D

jcnj
2 dS ¼ 1. (4)

According to this definition, a mode will be considered as being localized if its existence surface Sn is
significantly smaller than the surface area S ¼ a2 of the cavity. In a square (or rectangular) cavity, with
classical cosine eigenmodes cmn (m; n 2 N), the relative existence surface Smn=S is 1 for m ¼ n ¼ 0, 2

3 for m or
n ¼ 0, and 4

9
for m and n40. There are no localized modes in such a particular geometry.

2.1. Localization increases with irregularity

The numerical results described in the following have been obtained from numerical computations of the
eigenvalues kn and eigenfunctions cn using a P2 finite elements scheme and the solving libraries from
FEMLABs. A few examples are shown in Fig. 1. For the six different irregular cavities, one particular
localized mode has been pictured. For all these cases, one observes the strong confinement of the amplitude
distribution in the vicinity of the irregular wall. This generalizes what was shown on prefractal cavities:
fractality is not a prerequisite for localization. Any irregular cavity will exhibit localized modes, whatever the
shape and characteristic sizes of its boundary.
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Fig. 1. Examples of the amplitude distribution of localized modes in different irregular shallow cavities. One observes that, whatever the

type of irregular geometry, there always exist localized modes, i.e. modes which exhibit a very small amplitude in a major fraction of the

cavity space. The insets give for each geometry, the histogram of the relative existence surface of the eigenmodes in the frequency range

kna=p 2 ½0; 10�, compared to the results for a square cavity indicated by the empty bars (Color online).
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The insets in Fig. 1 give for each cavity the histogram of the relative existence surface Sn=S of the
eigenmodes in the frequency range kna=p 2 ½0; 10�, compared to the results for a square cavity. The effect of
the irregularity clearly appears on these plots: in each case, apart from the fundamental mode whose relative
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existence surface is equal to 1 independently of the geometry, almost all of the modes have a relative existence
surface smaller than 4

9, the minimum value in a square cavity.
Moreover, as it was shown for prefractal cavities, this tendency to localization is increased by the

irregularity of the boundary. To show this effect one considers, as an example, the geometry shown in Fig. 1a,
where the upper side of the initial square cavity has been replaced by N identical triangular wedges of height
a=2. The surface area of the cavity, S ¼ a2, is independent of N and the perimeter length is a linear function offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þN2
p

and thus increases as N. Fig. 2 shows the relative existence surface Sn=S of the first eigenmodes
(kna=p 2 ½0; 10�) of the cavity with 5, 10 and 20 wedges, respectively, as a function of their eigenfrequencies.
One observes a general decrease of the mean existence surface with increased irregularity. (Note that in this
particular example, it is the perimeter to surface ratio that is chosen to characterize the irregularity of the
boundary. For non-fractal geometries, and our purpose in this paper is precisely to consider non-fractal
geometries, it is a simple way to measure the irregularity, although it is not fully satisfactory. In the following
paragraph, a cavity with the same surface area and perimeter to surface ratio that the one described above, but
‘‘disordered’’ and in that sense more irregular, is considered to complete our study.)

Two comments can be formulated about these results. First, the total number of modes in the chosen
frequency interval increases with the perimeter to surface ratio. This reflects the classical correction to the
Weyl leading term in the density of modes [12]. Second, the modes can be split into two families. A first group,
the non-localized modes, is composed of the modes with typically, Sn=S40:2. The number of these modes is
globally independent of the number of wedges. Then, there is a second group, composed of an increasing
number of very localized modes with Sn=So0:2. These modes are confined near the irregular wall, in the ‘‘sub-
cavities’’ formed by the wedges (Fig. 1c), and their eigenfrequencies are grouped near frequencies
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Fig. 2. Relative existence surface of the first eigenmodes (kna=p 2 ½0; 10�) of the cavity of type (a) (see Fig. 1) with ( ) 5; ( ) 10 and ( ) 20

wedges, respectively. The dashed lines indicate the possible values for a square cavity. One observes that the more irregular the boundary

the more localized the eigenmodes (Color online).
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ka=p�1; 3; 5; 7; . . . . If one considers the sub-cavities as one-dimensional resonators with length a=2, these
frequencies correspond to l=4; 3l=4; . . . resonances.
2.2. Effect of randomization of the geometry

In the preceeding example—N identical wedges—the geometric irregularity of the cavity is, in fact, quite
‘‘regular’’. This specific shape limits the confinement of the amplitude distribution of the modes, because of the
degeneracy of the eigenmodes appearing in the irregular region.

Thus one expects that breaking this ‘‘regularity’’—the periodicity of the upper wall shape—, without
changing the perimeter to surface ratio, will increase the irregularity, and therefore the localization of the
modes. To this end, one may modify the geometry of the cavity shown in Fig. 1a by randomly varying, here up
to 20% of their initial value, the base and height of each wedge, as well as the abscissa of each vertex (Fig. 1b).
In this particular numerical calculation, we have ensured that the surface area and perimeter length of the
cavity differ by less than 0.01% from their initial value.

Results are shown in Fig. 3, where the relative existence surfaces of the eigenmodes in a cavity with 10
identical wedges are compared to those in a cavity with 10 ‘‘disordered’’ wedges. The net effect of breaking the
periodicity of the initial shape is to increase localization. Note that the relative existence surface of some
modes is as low as 1%.
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Fig. 3. Comparison between ‘‘regular’’ and randomized geometric irregularities, here a random set of wedges. The figure gives the relative

existence surface of the first eigenmodes (kna=p 2 ½0; 10�) of two cavities of identical surface area and perimeter length: ( ) cavity of type

(a) (see Fig. 1) with 10 identical wedges, ( ) cavity of type (b) with 10 ‘‘disordered’’ wedges. The dashed lines indicate the possible values

for a square cavity (Color online).
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2.3. The mechanism of localization

In the above results, one can note that any irregularity with a given size generates one or several localized
modes with a wavelength commensurate with that size. An example is the mode shown in Fig. 1c. But more
subtle cases exist, such as the mode shown in Fig. 1d which do not pertain to a visible geometric feature, or
Fig. 1e.

The existence of localized modes raises the question of the physical mechanism responsible for this
phenomenon. First note that, in contrast with fractal drums in which some of the modes are confined by the
Dirichlet boundary condition which forbids propagation in narrow regions, here there is no such ‘‘confining
force’’. Here the localization effects result from spatial coherence effects, or, in other words, from the fact that
diffractive effects create constructive interferences only in a small fraction of the resonator volume. The
interferences are essentially destructive elsewhere [13].

Then, in contrast with the first mentioned mechanism that results in a strong localization of the wave and an
exponential decay of its amplitude, here the localization is weak, characterized by a much slower decrease in
space. Our case is displayed in Fig. 4. The top figure illustrates the spatial dependance of a localized state in a
resonator. The bottom figure shows the same state in ‘‘open space’’ with non-reflecting boundary conditions
on the three sides of the square replacing the Neumann conditions (perfectly matched layers [14] were
implemented in FEMLAB for the numerical computations). Fig. 4 shows a rapid decrease of the amplitude in
the vicinity of the zone of confinement and a slower decrease (much slower than exponential) at larger distance
from the zone of confinement. This slow decrease is characteristic of this weak localization.
2.4. Mode repulsion

To be complete, one should mention that a closer look at the modes of the above cavity (Fig. 1a), but also of
other geometries of cavity based on a square, reveals that some of the non-localized states exhibit very weak
amplitudes near the irregular wall. Such modes are shown in Fig. 5. These modes are obviously very close, by
either their eigenvalue (ka=p�m, m 2 N) or their amplitude distribution in the x direction (parallel to the
bottom wall), to the ‘‘unperturbed’’ modes cmn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� dm0Þð2� dn0Þ

p
a�1 cosðmpx=aÞ cosðnpy=aÞ of a square

cavity, with n ¼ 0. But for those modes, the amplitude distribution in the y direction is strongly modified, with
a rapid decrease towards the irregular part of the boundary. Thus, although the irregularity has been found to
generally confine many modes in its vicinity, it appears that for a few modes the effect is in fact a ‘‘repulsion’’
effect. A similar phenomena has been found and analyzed by Izrailev et al. in quasi-1D waveguides with a
rough surface and Dirichlet boundary conditions [15]. One can understand qualitatively the existence of these
modes in a perturbative approach. If, instead of a geometry based on a square, one would consider a long
rectangle, with only one of the shorter sides made irregular, the non-localized modes would be essentially
those of the rectangle. But as those modes cannot satisfy the Neumann boundary condition of the true
rectangle they have to be very weak in the region of the irregular wall. This argument is sustained by the fact
that, if one compute the eigenmodes of an irregular cavity based not on a square but on a trapezoid shape, this
‘‘repulsion effect’’ tends to vanish. In summary, the repulsion effect is at least partially a consequence of our
choice to study square-based cavities.
2.4.1. Propagation in irregular waveguides

In the frequency domain, the sound field—the acoustic pressure p—for propagation in a cylindrical
waveguide can be expressed as the infinite series

pðs;wÞ ¼
X
n2N

cnðwÞðA
�
n e
�jgns þ Aþn e

jgnsÞ, (5)

where s and w are the longitudinal and transverse coordinate, respectively, cnðwÞ are the transverse modes in
the waveguide, that is, the solutions of the transverse Laplacian eigenproblem r2

?cn ¼ �k2
ncn, and gn are the

longitudinal wavenumbers: g2n ¼ k2
� k2

n, k ¼ o=c0 being the wavenumber. If now one supposes that the cross-
section of the waveguide is irregular, so that some of the transverse modes are localized in a restricted region



ARTICLE IN PRESS

log10 (s)

log10 (s)

lo
g 1

0 
(|p

/p
m

ax
|)

lo
g 1

0 
(|p

/p
m

ax
|)

-3

-2

-1

0

0

-1

-2

-3

Fig. 4. Decrease of the amplitude of a localized mode in two cases: top: the mode in a cavity with a prefractal defect (Fig. 1c). Bottom: the

same mode in an open space limited by the same prefractal frontier, and appearing with almost the same eigenfrequency. The red dashed

curved gives the amplitude along the corresponding red line on inset pictures, and similarly for the blue solid curves. s is the arc length

along these lines (Color online).
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of the cross-section, such a waveguide may be used to propagate simultaneously different acoustic signals that
would be spatially separated by 2D localization.
3. Energy dissipation

We now discuss the impact of the irregularity on the damping properties of the cavities. The medium filling
the cavity is supposed to be lossless and we consider the cases of weak and arbitrary losses occurring at the
walls, having a finite admittance �ðoÞ 2 C.
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Fig. 5. Illustration of the repulsive effect of the irregularity (Color online).
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3.1. Weak losses

If pn ¼ PnS1=2cn is the pressure field corresponding to the normalized eigenmode cn, the associated
dissipated energy W n, that is the total outflow through the cavity walls, is

W n ¼

Z
G

jpnj
2

2r0c0
Reð�ÞdL (6)

or

W n ¼
P2

nS

2r0c0
Reð�Þ

Z
G
jcnj

2 dL. (7)

Then, the energy dissipation is a direct function of the amplitude distribution of the mode in the cavity by the
term

wn ¼

Z
G
jcnj

2 dL. (8)

The role of localization is schematically illustrated in Fig. 6. Consider a non-localized mode (or the
fundamental mode c0 ¼ 1=

ffiffiffiffi
S
p

) of a cavity with a simple irregularity as shown on the left of the figure. Its
normalized amplitude jc0j

2 is of order 1=S and the associated loss term w0 is thus Lp=S, where Lp is the
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(Color online).
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perimeter length of the cavity. Therefore, for non-localized modes, the energy dissipation is roughly
proportional to the perimeter length, always an increasing function of irregularity. (For a square cavity with
eigenmodes cmn, ws

mn is equal to 4=a for m ¼ n ¼ 0, 6=a for m or n ¼ 0, and 8=a for m and n40.)
Consider now some particular mode cn localized in the upper right defect. In a very crude approximation,
jcnj

2 is of order of 1=Sn so that the loss term wn for this mode is Lpn=Sn, where Lpn is the perimeter of the zone
where the mode exists. This tells us that the more localized and the longer the perimeter of the localization
region, the more damped the mode will be. This would be particularly true if the perimeter of the localization
zone would be large as in the case of a prefractal curve of higher generation.

Again, consider the cavity of Fig. 1a. The energy dissipation of the modes computed through Eq. (8) is given
in Fig. 7a and b. To clearly point out the effect of the localization on the energy dissipation, the loss term wn is
plotted twice: on plot (a) it is normalized by the losses ws

00 of the fundamental mode in a square cavity of
surface S, in order to show the global effect of the increase of the irregularity, and on plot (b) it is normalized
by the losses w0 ¼ L=S of the fundamental mode in the cavity that is considered. With this normalization, the
energy dissipation of the fundamental mode is 1 for any cavity. Therefore, what increases proportionally to
the perimeter in the losses is hidden, and the sole effect of localization is shown.

For almost all of the modes the dissipation is increased as compared with a square cavity. This plot allows
us to distinguish the two families mentioned earlier (cf. Section 2.1). First, the non-localized modes, appearing
now to correspond to the weakly dissipative modes (with typically, wn=w0o4, see plot (b)). Second, the
strongly localized modes, corresponding to the strongly dissipating modes. Consider now how the energy
dissipation of the modes varies with the geometric irregularity of the boundary. If the energy dissipation of the
non-localized modes increases in a manner that is roughly proportional to the perimeter length, as expected,
the energy dissipation of the more localized modes increases more rapidly, due to the combined effects of the
increase of the perimeter length and of localization.

More generally, the dependance of the energy dissipation with the localization is shown in Fig. 7c and d.
This plot of the energy dissipation as a function of the relative existence surface reveals a global trend
characterized by an increase of the damping with irregularity and localization. This dependence of the energy
dissipation of a mode with its degree of localization results from the above discussion. Again as mentioned,
breaking the periodicity of the upper wall shape by randomly varying the dimensions of the wedges increases
significantly the localization, without changing of the perimeter to surface ratio. Consequently, as localization
and damping are strongly related, the energy dissipation also increases when ‘‘disordering’’ the wedges.

Note that the modes that are ‘‘repulsed’’ by the irregular boundary clearly appear when plotting the losses
(Fig. 7a and b; as precised earlier, these modes appear at frequencies ka=p�n, n 2 N�): since these modes
‘‘touch’’ only the 3 regular walls of the cavity and consequently a small part of the length of the whole
boundary, the corresponding losses are relatively small.

3.2. Arbitrary losses

For reasons of simplicity, the properties of localization and the resulting enhancement of the energy
dissipation have been shown under the assumption of weak losses at the wall, i.e. when the surface admittance
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eðoÞ is very small. Various examples of cavities with functions e that are not small have been also studied. In
view of the results—an example is given below—one can reasonably conjecture that, qualitatively, these
properties can be generalized to arbitrary values of the surface admittance e.

Consider, as an example, a 2D square cavity, of which three sides are rigid and perfectly reflecting while the
fourth (the upper side) is lined with a layer of rigid porous material. Assuming a locally reacting material, the
reduced surface admittance eðoÞ is thus taken as r0c0=zðoÞ, where zðoÞ is the surface impedance at normal
incidence of the porous layer:

zðoÞ ¼
j

f
ðrKÞ1=2 cot o

r
K

� �1=2
d

� �
, (9)

here d is the layer thickness of the porous layer, f the porosity, rðoÞ the effective density and KðoÞ the
effective bulk modulus of air in the material (on the dependance on r and K with the characteristic parameters
of the porous material, see, e.g., Ref. [16]). Besides, as this admittance is frequency dependent, we replace this
function by a piecewise constant approximation and solve the eigenvalue problem in each of the defined
frequency intervals. In the following results, the cavity side is a ¼ 0:2m and the porous materials is
characterized with the following parameters: porosity f ¼ 0:98, tortuosity a1 ¼ 1:2, flow resistivity
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s ¼ 40000Nm�4 s, characteristic dimensions L ¼ 2� 10�4 m and L0 ¼ 4� 10�4 m, thickness d ¼ 0:1m. With
these parameters, j�j varies between 0 and 0.9 in the frequency range that we consider and cases of strong
absorption are then taken into account (note the e is a normalized admittance).

The plane upper wall that is lined is then replaced by an irregularly shaped wall, and one supposes that this
new boundary has the same surface admittance as the porous layer preceedingly mentioned.

The comparison between these two cavities is shown in Fig. 8. As found in the weak losses case, the irregular
geometry of the boundary induces a global effect of confinement of the modes, as shown on the first plot
giving the relative existence surfaces. Due to this increase of the amplitude in the irregular and lossy region, the
damping of the modes is also enhanced (Fig. 8b). For these results, the integral path in Eq. (8) has been
restricted to the irregular boundary.
4. Conclusion

In summary, it has been shown that whatever its specific shape, the irregular morphology of a 2D shallow
acoustic cavity contributes to enhance its dissipative power. This has been shown for several different types of
geometry so that the conclusion must hold quite generally. A first effect is simply due to the enhanced surface
of interaction between the acoustic modes and the cavity walls. But more interestingly and quite generally,
there appear a number of modes localized near the irregular walls. The damping of these localized modes is
specifically increased. The general conclusion is simple and applicable: geometric irregularity increases the
effective damping of acoustic cavities.

In this paper, we have been concerned by shallow cavities and the question remains open for 3D cavities.
The 3D problem can be splitted in two different questions. First, it is well known that localization effects may
be very different in 2D and 3D and this question should be studied in the future for acoustic cavities. But
secondly, the relations between localization and damping derived in this work holds for any space
dimensionality.
aw
n

0

(b)

40

20

60

S n S

(a)

0

1

Re (kn) a/π
0 2 4 6 8 10

Re (kn) a/π
0 2 4 6 8 10

0.2

0.4

0.6

0.8

Fig. 8. (a) Relative existence surface and (b) energy dissipation, as measured by wn (normalized by 1=a), for the first eigenmodes

(ReðknÞa=p 2 ½0; 10�) of the cavities shown in insets, of which the upper boundary admittance is lined with a porous layer. The dashed lines

on plot (a) indicate the possible values for a lossless square cavity (Color online).



ARTICLE IN PRESS
S. Félix et al. / Journal of Sound and Vibration 299 (2007) 965–976976
References

[1] T. Wu, T.J. Cox, Y.W. Lam, From a profiled diffuser to an optimized absorber, Journal of the Acoustic Society of America 108 (2)

(2000) 643–650.

[2] T. Wu, T.J. Cox, Y.W. Lam, A profiles structure with improved low frequency absorption, Journal of the Acoustic Society of America

110 (6) (2001) 3064–3070.

[3] F.C. Sgard, X. Olny, N. Atalla, F. Castel, On the use of perforations to improve the sound absorption of porous materials, Applied

Acoustics 66 (2005) 625–651.

[4] E. Redon, 17e Congrès Franc-ais de Mécanique, Troyes, 2005.
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